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The Exonuclease ISG20 Mainly Localizes in the Nucleolus
and the Cajal (Coiled) Bodies and Is Associated With
Nuclear SMN Protein-Containing Complexes
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Abstract We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 30 to 50

exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA.
In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and
nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the
Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red
fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using
electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus,
the major site for rRNA processing. We also present evidences that ISG20 was associated with Survival of Motor Neuron
(SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear
ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA.
The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-
mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation. J. Cell. Biochem. 98: 1320–1333,
2006. � 2006 Wiley-Liss, Inc.
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The processing and turnover of the different
classes of RNA require the action of a large
number of ribonucleases (RNase), including
endo and exoribonucleases [Beelman and
Parker, 1995; Deutscher and Li, 2001; Tour-
riere et al., 2002]. Extensive sequence and
catalytic properties analysis have allowed to

group the exoribonucleases into six main
superfamilies, RNR, DEDD, RBN, PDX,
RRP4, and 5PX and a variety of subfamilies
[Moser et al., 1997; Zuo and Deutscher, 2001].
In particular, DEDD is a large exonuclease
superfamily, which includes RNases such as
RNase T and D, the proofreading domains of
the Pol I family of DNApolymerases, and other
DNA exonucleases. Homologies within this
superfamily are concentrated at three sepa-
rate conserved exonuclease motifs termed
ExoI, ExoII, and ExoIII with four invariant
acidic amino acids (D: aspartic acid, E: gluta-
mic acid) and several other conserved residues
[Moser et al., 1997; Zuo and Deutscher, 2001].
Members of this superfamily can have both
RNase and DNase activities. Based on these
alignment studies, ISG20, an interferon (IFN)-
inducible protein, was shown to be amember of
the DEDD family [Gongora et al., 1997; Moser
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et al., 1997]. Biochemical analysis allowed us
to identify ISG20 as a 30 to 50 exonuclease
specific for single-stranded RNA and, to a
lesser extent, DNA [Nguyen et al., 2001]. A
single substitution of a conserved aspartic acid
by a glycine residue is sufficient to abolish its
exonuclease activity [Nguyen et al., 2001].
Amino acid comparison suggests that ISG20
might be a human homolog of the yeast protein
Rex4p, member of the Rex DEDD subfamily
[van Hoof et al., 2000]. Interestingly, various
Rex proteins have been shown to have aunique
and overlapping function in the processing of
many RNA species, including 5S and 5.8S
rRNAs, U4, and U5 small RNAs (snRNAs),
RNase MPR, and RNase P RNAs [van Hoof
et al., 2000]. Even though the exact specificity
of Rex4p fails to be determined, these data
suggest that ISG20 might be involved in the
processing of rRNA, snRNAs, or components
required for ribosome biogenesis.
In mammalian cells, these processes mainly

occur in discrete and dynamic nuclear struc-
tures named the nucleolus and the Cajal bodies
(CBs) [Lamond and Earnshaw, 1998; Gall,
2000;Dundr andMisteli, 2002; Carmo-Fonseca,
2002a]. The nucleoli are organized around
rRNA gene clusters and they are considered as
the center of rRNA processing and ribosome
subunit biogenesis [Shaw and Jordan, 1995;
Lamond andEarnshaw, 1998; Scheer andHock,
1999; Olson et al., 2000; Dundr and Misteli,
2001]. However, they are now also clearly
involved in the maturation of non-ribosomal
RNA species [Kadowaki et al., 1995; Schneiter
et al., 1995; Pederson, 1998]. The CBs are non-
membrane-bound nuclear suborganelles impli-
cated in the post-transcriptional maturation of
small nuclear (snRNAs) and small nucleolar
(snoRNAs) RNAs [Samarsky et al., 1998;
Matera, 1999; Narayanan et al., 1999; Verheg-
gen et al., 2002; Jady et al., 2003; Sleeman et al.,
2003]. At the physiological level, theCBs vary in
number and size among cell types and also show
cell cycle variation [Ogg and Lamond, 2002;
Carmo-Fonseca, 2002b]. Their presence in the
cells is the marker of active transcriptional
processes [Gall et al., 1999; Gall, 2000; Gall,
2001; Ogg and Lamond, 2002]. Now, it is clear
that the CBs and the nucleolus are highly
mobile compartments responding to the cellular
environment and functionally interacting
together. Indeed, prior to their processing by
endo and exonucleases, the rRNAs require post-

transcriptional modifications directed by snoR-
NAs that are themselves processed in the CBs
before being imported to the nucleoli [Tollervey
and Kiss, 1997; Scheer and Hock, 1999; Olson
et al., 2000; Dundr and Misteli, 2001; Ogg and
Lamond, 2002; Carmo-Fonseca, 2002b]. In
addition, the CBs are frequently located close
to or within the nucleoli and coilin, the major
protein responsible for CBs formation, has been
shown to mediate communication between the
two compartments [Lyon et al., 1997; Sleeman
et al., 1998; Shpargel et al., 2003]. Finally, a
recent extensive proteomic analysis performed
on purified nucleoli revealed the complexity and
the interplay between the different nuclear
structures [Andersen et al., 2002].

We have previously shown, using transient
transfection experiments with an ISG20 pro-
tein fused to the HA epitope peptide from
influenza virus, that the ectopic ISG20 fusion
protein localized in the nucleus within the
promyelocytic leukemia (PML) nuclear bodies
(PML-NBs) [Gongora et al., 1997]. The list of
proteins associated with PML-NBs is growing
[Negorev and Maul, 2001]. However, now it
appears clearly that the identification of PML-
NBs-associated proteins bymeans of transient
transfection andwith an artificially integrated
gene locus is not a reliable method and often
leads to aberrant cellular distribution [Maul
et al., 2000; Tsukamoto et al., 2000; Borden,
2002]. Thus, to definitely analyze the subcel-
lular distribution of the endogenous ISG20, in
physiologically relevant experiments, specific
mouse antibodies were generated against the
recombinant protein [Espert et al., 2003]. In
this report, using confocal immunofluores-
cence microscopy and electronic microscopy
we show that ISG20 is clearly not associated
with PML-NBs. We find that in addition to a
diffuse cytoplasmic localization, ISG20 ap-
peared concentrated in the nucleus both in
the nucleolus and in the CBs. Using immuno-
precipitation experiments, we show that
ISG20 interacted with the survival motor
neuron (SMN) protein considered to be the
master assembler of macromolecular com-
plexes involved in ribonucleoprotein and ribo-
some assembly. Accordingly, U1 and U2
snRNAs, and U3 snoRNA were co-immuno-
precipitated with ISG20. Altogether, these
data strongly suggest that ISG20 might play
a role in thematuration of snRNAsand rRNAs,
and in ribosome biogenesis.
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MATERIALS AND METHODS

Cell Culture

Human HeLa cells were cultured at 378C in
Dulbecco’s modified Eagles’ medium supple-
mented with 10% fetal bovine serum (FBS).
Human lymphoblastoid Daudi cells were cul-
tured in RPMI 1640 supplemented with 10%
FBS. For immunofluorescence assays, HeLa
cells were cultured on glass slides and Daudi
cells were adhered on polylysine coated glass
slides just before fixation. Human a2aIFN
(Intron A) was purchased from Schering-
Plough.

Transient Transfections

For immunofluorescence analysis, transient
transfections were carried out using the Lipo-
fectamine Plus Reagent method according to
the manufacturer’s instructions (Invitrogen,
France). HeLa cells were cultured on 6-well
plates and transfected with 500 ng of a coilin-
dsRed expression vector [Boulon et al., 2002].
Twenty-four hours after transfection, the cells
werewashedandfixedwith100%coldmethanol
for 5 min at �208C, prior to immunofluores-
cence. For immunoprecipitation experiments,
4 mg of pEGFP, pEGFP-ISG20, or pEGFP-
mutISG20 expression vectors [Espert et al.,
2003] were transfected on 100-mm culture
dishes.

Antibodies

Specific mouse and rabbit ISG20 polyclonal
antibodies were previously described [Espert
et al., 2003]. Rabbit PML polyclonal antibodies
were purchased from Santa Cruz Biotechnolo-
gies. Rabbit anti-coilin antibodies were kindly
provided by Dr. A. Lamond (Dundee, UK). The
monoclonal anti-coilin and anti-SMN antibo-
dies were purchased from BD Transduction
Laboratories (BD Biosciences, France). The
polyclonal rabbit fibrillarin antibody was
purchased from Santa Cruz (Santa Cruz,
California). Texas-Red-conjugated and fluores-
cein-conjugated (FITC-conjugated) secondary
antibodies were purchased from Beckman
Coulter (Marseille, France). Anti-GFP mouse
monoclonal antibodywaspurchased fromRoche
Diagnostic (France).

Immunofluorescence Analysis

For immunofluorescence staining, the cells
were washed three times in phosphate-buffered

saline (PBS), fixed and permeabilized with
100% cold methanol for 5 min at �208C. The
cells were then rehydrated in PBS/0.1% Tween
20 for 15 min at room temperature and
incubated for 30 min in PBS/0.1% Tween 20
supplementedwith 5%FBS. Stainingwith anti-
ISG20 (1:1,000), anti-coilin (1:100), and anti
PML (1:500) antibodies were carried out for 1 h
in PBS/0.1%Tween 20 supplementedwith 0.1%
BSA. The cells werewashed three times in PBS/
0.1% Tween 20 and incubated for 30 min with
the secondary antibodies; Texas-Red-conju-
gated (1:100) or FITC-conjugated (1:1,000).
Then, the nuclei were stained with DAPI
(Sigma) at 2.5 mg/ml for 5 min and finally the
cells were washed three times in PBS/0.1%
Tween 20. For the antigen competition assay,
the immunofluorescence protocol was the same
as described above except that recombinant
glutathione S-transferase (GST)-ISG20 (GST-
ISG20) or GST alone, produced in the BL21-
DE3 E. coli strain and purified by affinity
chromatography on glutathione Sepharose,
was added to anti-ISG20 serum before incuba-
tion with fixed HeLa cells. Imaging was per-
formed at the CNRS-UPR 1086 CRBM Imaging
Facility. For single immunostaining, images
were acquired with a micromax 1300YHS CCD
camera (Princeton Instruments) on a Leica
DMRA microscope (Leica Microsystems) and
stored as single TIFF images using META-
MORPH software (Universal Imaging). For
double immunostaining, A DMR B Leica con-
focal laser-scanning microscope equipped with
an argon/krypton ion laser was used with a
100� PL APO HCX CS oil immersion objective.
The microscope was fitted with a Nipkoff disk
device (Perkin Elmer Ultraview). Images were
captured with a coolsnap HQ (Photometrics)
camera driven by Meta-Morph software (ver-
sion 4.11;Universal Imaging,Westchester, PA).
Images were processed using Adobe Photoshop
software.

Immunoelectron Microscopy

Cells were fixed with 1.6% glutaraldehyde in
Sörensen phosphate buffer at 48C during 1 h at
pH 7.3. The cells were then scraped and
centrifuged at 3,000g for 10min. The cell pellets
were washed three times in phosphate buffer
then sequentially dehydrated inmethanol (30%
and 50% each for 5 min at 48C, 70% and 90%,
respectively, 5 and 30 min at �208C). This was
followed by mixtures of 1:1 proportion of 90%
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methanol/Lowicryl K4M (Chemische Werke
Lowi, Waldkraiburg) for 1 h at �208C, then
mixture of 90%methanol/ Lowicryl K4M (1:2, v/
v) for 1 h at �208C, finally 2 volumes of pure
Lowicryl K4M for 1 h at �208C and overnight
with pure Lowicryl. Cell pellets were trans-
ferred to pure Lowicryl capsules and polymer-
izationwas induced byUV irradiation for 5 days
at �308C, followed by one more day at room
temperature. Ultra-thin sections on gold grids
were sequentially incubated with 5% BSA in
PBS for 30 s andwith anti-ISG20 serum diluted
1:50 for 1 h, then with the secondary antibody
(mouse anti-IgG) conjugated to 10 nm gold
particles (Biocell Research Laboratories, Car-
diff) diluted 1:30 in PBS (30 min). Finally, the
sections were washed and stained with 5%
aqueous uranyl acetate before their observation
with a ZEISS 902 electron microscope at 80 kV.

Immunoprecipitation and Protein Analysis

The cells were resuspended in PBS lysis
buffer containing: 0.5% Triton X-100, 1 mM
DTT, 100 mM phenylmethylsulphonyl fluoride
(PMSF), protease inhibitor cocktail (1 tablet/
10 ml, Roche Diagnostics), and 0.1 U/ml RNase
inhibitor RNasin (Promega). Supernatant
(10,000g) was prepared and used for immuno-
precipitation. Extracts were incubated for 1 h at
48C with either anti-ISG20 or anti-GFP anti-
bodies. The extracts were thenmixed with 30 ml
of sheep anti-mouse IgG attached to magnetic
beads (Dynabeads, Dynal France) and incu-
bated for 1 h at 48C. The beads werewashed five
times in PBS lysis buffer. The immunoprecipi-
tated proteins were resuspended in 20 ml of
loading buffer (10mMTris-HClpH6.8, 1%SDS,
5 mM EDTA, and 50% glycerol), incubated for
5minat 958C, fractionatedona12%SDS–PAGE,
and transferred onto PVDF membrane. After a
blocking step, the membrane was incubated
with the appropriate antibody and then de-
veloped using a chemiluminescent detection
system (ECL-Plus, Amersham Pharmacia
Biotech).
To obtain cytoplasmic and nuclear extracts,

the cellswere resuspended in10 volumes ofPBS
buffer diluted 1:4 and containing: 0.5% Triton
X-100, 1 mM DTT, 100 mM PMSF, protease
inhibitor cocktail, and 0.1 U/ml RNase inhibitor
RNasin. Cytoplasmic extracts were separated
from nuclei by centrifugation at 1,260g, cleared
by an additional centrifugation at 10,000g for
10 min and then adjusted to 200 mMNaCl. The

nuclei pellets were resuspended in PBS lysis
buffer adjusted to 200 mM NaCl. After 15 min
incubation, the nuclear extracts were recovered
by centrifugation at 12,000g for 10 min. For
immunoprecipitations, highly affinity purified
rabbit polyclonal anti-ISG20 antibodies were
covalently linked to tosyl-activated magnetic
beads as described by themanufacturer (Dynal,
France).

Northern Blot Analysis

Immunoprecipitates were resuspended in
formamide loading buffer and fractionated
through a 6% polyacrylamide-7M urea gel,
transferred onto a nylon membrane (Hybond
Nþ, Amersham Pharmacia) and hybridized to
107 cpm/ml of [32P]-labeledU1,U2, orU3 cDNA
probe. Membranes were washed to a final strin-
gency of 0.2� SSC/0.1% SDS (1� SSC is 0.15M
sodium chloride and 0.015M sodium citrate,
pH 7.0), at 428C before autoradiography.

RESULTS

Subcellular Distribution of ISG20 Protein

To analyze the subcellular distribution of the
endogenous ISG20, specific mouse antibodies
were generated against a glutathione S-trans-
ferase (GST)-ISG20 (GST-ISG20) fusionprotein
and their specificity established byWestern blot
[Espert et al., 2003]. Antiserum stainings were
performed on HeLa cells using microscopic
immunofluorescence. In addition to a diffuse
cytoplasmic and nucleoplasmic localization,
ISG20 also appeared to be concentrated in the
nucleus both in the nucleoli and in two to three
bright discrete punctuated intranuclear struc-
tures (Fig. 1A). As negative control, immuno-
fluorescence analysis was performed with the
antiserum anti-ISG20 or with the FITC-con-
jugated mouse secondary antibody used alone
(data not shown). The same staining pattern
was observed from anti-ISG20 antiserum
obtained from three independently immunized
mice. The specificity of the staining observed
was validated by performing an antigen compe-
tition assay with GST or GST-ISG20 recombi-
nant protein as competitor for antibody binding
(Fig. 1B,C). The recombinant GST-ISG20 pro-
tein fully reversed the staining, whereas in
competition experiments performed with GST
control protein, no reduction in the stainingwas
observed. These data demonstrated the ability
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of our mouse serum anti-ISG20 to detect
endogenous ISG20 protein.

ISG20 Accumulates in Cajal (Coiled) Bodies
Nuclear Structures

In addition to the nucleoli staining, the
antiserum anti-ISG20 typically labeled two to
three punctuated structures scattered in the
nucleoplasm around the nucleoli (Fig. 1). This
punctuated nuclear pattern is reminiscent of
the labeling observed for theCBs. [Bellini, 2000;
Gall, 2000; Lam et al., 2002]. Indeed, several
observations are consistent with this analysis.
First, the nucleoli and the CBs are physically
and functionally closely associated [Gall, 2001;
Ogg and Lamond, 2002; Carmo-Fonseca,
2002b], and the CBs were first described as
‘‘nucleolar accessory bodies’’ by their disco-
verers [Cajal, 1903]. Second, the CBs are highly
mobile structures and have the ability to move
to and from the nucleolar periphery and within
the nucleolus [Platani et al., 2000]. Finally,
using snRNP proteins in fusion with the green
fluorescentprotein (GFP), dynamic interactions

between components of theCBs and thenucleoli
have been demonstrated [Sleeman et al., 1998].
We have previously shown that, in transient
transfection experimentswithan ISG20protein
fused to the HA epitope from influenza virus,
the ectopic ISG20 protein localized in the
nucleus within the promyelocytic leukemia
nuclear bodies (PML-NBs) [Gongora et al.,
1997]. To clarify this discrepancy, double stain-
ing immunofluorescence experiments were per-
formed in physiologically relevant experiments
on HeLa cells with anti-ISG20 antibodies and
either antibodies against the CBs signature
protein, p80-coilin [Andrade et al., 1991], or
anti-PML polyclonal antibodies. The confocal
fluorescence micrographs presented in
Figure 2A-a and -b, show that, except for the
nucleolar labeling, the nuclear pattern of endo-
genous ISG20 and p80-coilin immunostaining
are similar. The superimposition of the single
confocal images reveals that the two proteins
perfectly colocalize in the small-punctuated
structures (Fig. 2A-c). In contrast, the pattern
observed for PML immunostaining presented

Fig. 1. Subcellular localization of ISG20. A: HeLa cells were
fixed for 5 min at �208C in 100% methanol. a: The cells were
labeled with mouse polyclonal anti-ISG20 antibodies and
revealed with a FITC-conjugated secondary antibody. b: Overlay
of nuclear DAPI staining and ISG20 staining. c: High magnifica-
tion of a labeled nucleus is presented. The yellow arrows indicate
specific dots in the cell nucleus. B: Recombinant ISG20
selectively competes with ISG20 antibody labeling. HeLa cells
were labeled using mouse anti-ISG20 antibodies in absence (a) or
presence of either GST-ISG20 (b), or GST alone (c) recombinant

protein at 200 mg/ml, and then revealed by a FITC-conjugated
secondary antibody. C: Pixel intensities of ISG20 labeling
presented in (B), performed in absence (a) or in presence of
either GST-ISG20 (b) or GST alone (c) were recorded using
Metamorph software (Universal Imaging corp.). Minima (back-
ground level) and maxima (ISG20 specific staining signal)
intensities were recorded using constant nuclear areas. The
measurements from 16 different cells of each labeling experi-
ment (a, b, and c) were averaged and plotted� SD.
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many more punctuated structures that are
clearly not coincident with ISG20 labeling
(Fig. 2B). It should be noted that the pattern of
ISG20 labeling is similar in the presence of PML
and in the PML�/� cells (data not shown). As
the absence of PML results in a diffuse distribu-
tion of all other NBs-associated proteins, these
data clearly confirmed that ISG20 is not NBs-
associated.
To strengthen our finding, we analyzed the

colocalization between endogenous ISG20 and
an ectopically expressed coilin-red fluorescent
fusion protein (coilin-dsRed) [Boulon et al.,
2002]. HeLa cells were transfected with the

coilin-dsRed-expressing construct, as described
in Materials and Methods. Twenty-four hours
later, transfected cells were detected by red
fluorescence, and ISG20 protein expression was
monitored by immunofluorescence using the
mouse polyclonal anti-ISG20 antibody. The
ectopically expressed coilin-dsRed presented a
punctuated pattern with numerous nuclear
dots (Fig. 3b). These data are not surprising
because coilin is responsible for regulating the
number of CBs [Ogg and Lamond, 2002]. In
particular, it has been previously shown that
ectopic expression of a coilin fusion protein with
the GFP at its C-terminus led to a striking

Fig. 2. ISG20 colocalizes with the coilin protein in CBs.
A: Double-labeling of HeLa cells was performed using mouse
anti-ISG20 antibodies and specific rabbit polyclonal anti-coilin
antibodies. ISG20 was revealed with a FITC-conjugated second-
ary antibody (a) and Coilin with a Texas-Red-conjugated secon-
dary antibody (b). The overlay of the two images is presented

(c). The arrows in each image indicate the labeled CBs.
B: Double-labeling of HeLa cells was performed using mouse
anti-ISG20 antibodies and specific rabbit polyclonal anti-PML
antibodies. ISG20 is revealed with a FITC-conjugated secondary
antibody (a) and PML with a rabbit Texas-Red-conjugated
secondary antibody (b). Superimposed images are shown (c).

Fig. 3. Endogenous ISG20 colocalizes with ectopically expressed coilin. The coilin-dsRed expression
vector (0.5 mg) was transfected in HeLa cells using the Lipofectamine Plus Reagent protocol. Twenty-hours
later, cells were single-labeled with the anti-ISG20 antibodies and revealed with a FITC-conjugated
secondary antibody (a). Coilin-dsRed is visualized in red (b) and the two images were superimposed (c).
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increase in the number of CBs [Shpargel et al.,
2003]. Concomitantly with a higher number of
CBs, the number of nuclear dots containing
ISG20 also increases (Fig. 3a). Moreover, the
two proteins perfectly colocalized in these
structures (Fig. 3c). Taken together, all these
experiments demonstrated that, beside its pre-
sence in the nucleolus, ISG20 is associated with
the CBs.

IFN Treatments of HeLa or Daudi Cells Increase
ISG20 Expression in the CBs

CBs and the nucleoli are typically highly
dynamic nuclear structures. In particular,
various stimuli such as viral infections [Mat-
thews, 2001; Hiscox, 2002] or specific inhibition
of rRNA transcription [Schofer et al., 1996;
Chen and von Mikecz, 2000] can cause the

redistribution of nucleolar-associated proteins.
Interestingly, it has been suggested that the
inhibition of cell proliferation by IFN might
partly result from the inhibition of rRNA
transcription mediated by the IFN-induced
p202 protein [Liu et al., 1999]. As ISG20 is an
IFN-inducible protein [Gongora et al., 1997;
Gongora et al., 2000],we addressed the question
of whether treatment of HeLa and lymphoblas-
toid Daudi cells with IFN could alter its cellular
distribution. To this end, both HeLa and Daudi
cells were cultured for 16 h in absence or
presence of 500 U/ml of human a2aIFN (Hu-
a2aIFN). Single immunofluorescence stainings
were performed with either anti-ISG20 anti-
bodies or anti-coilin antibodies, as previously
described. No apparent cellular redistribution
of ISG20 and coilin proteins were observed

Fig. 4. IFN treatments of HeLa or Daudi cells increase ISG20
expression in the Cajal bodies. A: HeLa and Daudi cells untreated
(�IFN) or treated (þIFN) for 16 h with 500 U/ml of Hu-a2aIFN
were fixed for 5 min at �208C in 100% methanol. Subsequently,
cells were labeled with either mouse polyclonal anti-ISG20
antibodies or with mouse monoclonal anti-coilin antibodies and
revealed with the FITC-conjugated secondary antibody for ISG20
or TRITC-conjugated secondary antibody for Coilin. B: For each
experimental condition, pixel intensities of individual spots were
recorded using Metamorph software (Universal Imaging corp.).

The histograms represent the mean of intensities measured for at
least 20–30 ISG20 or coilin dot spots in absence (fill white) or
presence (fill black) of IFN. C: (a) Whole protein extracts from
Daudi cells untreated (ct) or treated for 16 h with 500 U/ml of
a2aIFN were prepared and analyzed by immunoblotting with
specific rabbit anti-ISG20 antibodies. Expression of atubulin was
used as an invariant control. (b) Cytoplasmic and nuclear extracts
were prepared from Daudi cells and analyzed by immunoblot-
ting with rabbit anti-ISG20 antibodies.
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followingHu-a2aIFN treatment (Fig. 4A). How-
ever, ISG20 staining appeared significantly
increased both in the cytoplasm and in the
CBs. No significant variation of ISG20 nucleoli
staining was observed. In addition, pixel inten-
sity analysis of at least 20–30 ISG20 or coilin
individual spots confirmed that ISG20 was
significantly upregulated by IFN, whereas
coilin remained invariant in the CBs (Fig. 4B).
To confirm these data, the ISG20 subcellular
distributionwas carried out byWesternblotting
analysis of subcellular fractions prepared from
HeLa cells, as described in Materials and
Methods. As expected, ISG20 protein is present
in both the cytoplasmic and the nuclear fraction
and the protein is induced by Hu-a2aIFN in
these two compartments (Fig. 4C).

ISG20 Protein Concentrates in the Dense Fibrillar
Component (DFC) of the Nucleolus

The overlay of ISG20 and the morphological
nucleolar marker fibrillarin immunostaining
images confirmed that ISG20 was also localized
in the nucleoli (Fig. 5A-c). The nucleolus can be
subdivided in three morphologically and func-
tionally distinct subcompartments; the fibrillar
center (FC), the dense fibrillar component

(DFC), and the granular component (GC). It is
usually admitted that the early steps of rRNA
processing occur in the DFC, whereas the later
steps and ribosome assembly occur in the GC
[Scheer and Hock, 1999; Dundr and Misteli,
2001; Carmo-Fonseca, 2002b]. These three
components reflect the vectorial process of
ribosome biogenesis [Dundr and Misteli,
2001]. We used immunoelectron microscopy to
accurately determine the nucleolar localization
of ISG20. The electron micrographs presented
inFigure 5B show that gold particles aremainly
located over the DFC on HeLa cells (Fig. 5B-a).
Very few gold particles are present over the GC,
whereas the FC component is unlabeled. The
reorganization of nucleolar ultrastructures by
actinomycin D has been described associated
with the inhibition of rRNA synthesis [Puvion-
Dutilleul et al., 1992]. In particular, this treat-
ment leads to the segregation of the three
components of the nucleolus, allowing the
visualization of each of them independently
[Puvion-Dutilleul et al., 1992]. Accordingly, in
actinomycin D-treated HeLa cells (Fig. 5B-b),
gold particles are principally concentrated in
theDFC.Altogether, these experiments demon-
strate that the exonuclease ISG20 protein

Fig. 5. ISG20 localizes within the dense fibrillar component of the nucleolus. A: HeLa cells were labeled
with mouse polyclonal anti-ISG20 antibodies and with specific rabbit polyclonal anti-fibrillarin antibodies.
ISG20 was revealed with a FITC-conjugated secondary antibody (a) and fibrillarin with a Texas-Red-
conjugated secondary antibody (b). The superimposition of the two pictures is represented (c). B: ISG20 was
revealed by electron microscopy in the nucleolus of untreated (a) or actinomycin D treated (b) HeLa cells.
Granular (G), fibrillar center (FC) and dense fibrillar (DF) components are indicated. Scale bar, 0.5 mm.
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mainly localized in the DFC, the major site
described for rRNA processing in the nucleolus
[Puvion-Dutilleul et al., 1992; Andersen et al.,
2002; Carmo-Fonseca, 2002a], suggesting that
ISG20 might be involved in the processing of
rRNA.

ISG20 Was Associated With Nuclear
SMN-Containing Macromolecular Complexes

SMN is part of a large complex of proteins
required for the biogenesis of various snRNPs
[Fischer et al., 1997; Liu et al., 1997]. The
protein mainly localizes in both the cytoplasm
and in the CBs [Liu and Dreyfuss, 1996]. In
particular, CBs appear to be the nuclear sites
where SMN facilitates assembly of various
diverse cellular complexes [Terns and Terns,
2001]. However, SMN was also found in the
nucleoli of neuronal cells [Lefebvre et al., 2002;
Wehner et al., 2002] and in fetal tissues [Young

et al., 2001]. In addition, coilin was shown to be
the factor responsible for targeting SMN to CBs
[Hebert et al., 2001; Tucker et al., 2001; Hebert
et al., 2002]. The exonuclease activity of ISG20
and its subcellular distribution led us to
imagine that ISG20 could interact with the
SMNmacromolecular complex. To evaluate this
hypothesis, whole protein extracts from HeLa
cells were prepared and subjected to immuno-
precipitations with highly affinity purified
rabbit polyclonal anti-ISG20 antibodies cova-
lently linked to tosyl-activated magnetic beads.
The immunoprecipitates were then analyzed by
Western blotting using a specific anti-SMN
monoclonal antibody. The results presented in
Figure 6A show that SMN was efficiently co-
precipitated with ISG20 (lane 3). No co-pre-
cipitation was detectable in experiments per-
formed in absence of anti-ISG20 antibodies
(lane 4). To strengthen our finding, HeLa cells

Fig. 6. ISG20 belongs to a nuclear-SMN containing complex.
A: Total protein extracts from HeLa cells were subjected to
immunoprecipitation with the anti-ISG20 antibody covalently
linked to tosyl-activated magnetic beads as described in
Materials and Methods. Immunoprecipitated proteins were then
fractionated by SDS–PAGE and revealed by Western blotting
with either anti-SMN or anti-ISG20 antibodies. The inputs (lane
1) and the supernatants after immunoprecipitation (lane 2) show
4% of the lysate used in the immunoprecipitation reactions. As
control, the immunoprecipitation was performed in absence of
anti-ISG20 antibodies (lane 4). B: HeLa cells were transfected
with the pEGFP vector or with vectors expressing either a GFP-
ISG20 fusion protein or the GFP protein fused with an inactive
mutated ISG20 protein (GFP-mutISG20). Whole protein extracts

were prepared and subjected to immunoprecipitations with a
mouse polyclonal anti-GFP antibody. The immunoprecipitates
were then analyzed by Western blotting using the anti-ISG20
(top) or anti-SMN antibodies (bottom). C: Cytoplasmic and
nuclear extracts were prepared from Daudi cells and subjected to
immunoprecipitations with highly affinity purified rabbit poly-
clonal anti-ISG20 antibodies and irrelevant rabbit polyclonal
antibodies covalently linked to tosyl-activated magnetic beads as
described in Materials and Methods. The immunoprecipitates
were then analyzed by Western blotting using the anti-ISG20 or
anti-SMN antibodies. The lanes corresponding to the input (I), the
supernatants after immunoprecipitation (S), and the immuno-
precipitates (IP) are indicated.
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were transfected with vectors expressing either
a GFP-ISG20 fusion protein or the GFP-fused
with an inactive mutated ISG20 protein (GFP-
mutISG20) [Espert et al., 2003]. The empty
pEGFP vector, expressing GFP protein alone
was used as a negative control. Twenty-four
hours after transfection, whole protein extracts
were prepared and subjected to immunopreci-
pitations with a mouse monoclonal anti-GFP
antibody. The immunoprecipitates were then
analyzed by Western blotting using the anti-
SMN or anti-ISG20 antibody. As expected, the
results presented on Figure 6B show that SMN
was immunoprecipitated by the anti-GFP anti-
body from cellular extract of GFP-ISG20 trans-
fected cells (lane 5). No immunoprecipitation
was detected from cells transfected with the
empty pEGFP vector (lane 4). In accordance
with the previously described dominant-nega-
tive activity of mutISG20, SMN also associated
with GFP-mutISG20 protein (lane 6).
Like ISG20, SMN is present in both the

cytoplasm and in the CBs. So, we next investi-
gated the cellular distribution of ISG20/SMN-
containing complexes. Cytoplasmic and nuclear
extracts were prepared from Daudi cells, as
described in Materials and Methods, and sub-
jected to immunoprecipitations with anti-ISG20
antibodies covalently linked to tosyl-activated
magnetic beads. The immunoprecipitates were
analyzed by Western blotting using the anti-
SMN or anti-ISG20 antibody. Interestingly,
SMN was co-immunoprecipitated with ISG20
fromnuclear extracts (Fig. 6C). No co-precipita-
tion was detectable from cytoplasmic extracts
suggesting that ISG20/SMN-containing com-
plexes were only present in the CBs. Neither
SMN nor ISG20 was immunoprecipitated with
an irrelevant rabbit polyclonal antibody demon-
strating the specificity of the immunoprecipita-
tion. Similar data were obtained with extracts
prepared from HeLa cells (data not shown).
These data clearly demonstrate that ISG20was
associated with SMN-containing macromolecu-
lar nuclear complexes.

Small Nuclear RNAs Co-Immunoprecipates
With ISG20

SMN macromolecular complexes are charac-
terized by ultrastructured RNA-proteins inter-
actions. In particular, SMN is considered to be
the master assembler of snRNPs and snoRNPs
ribonucleoproteic complexes. To assay the cap-

ability of ISG20 to associate with complexes
containing snRNPs or snoRNPs, HeLa cells
were transfected with pEGFP, pEGFP-ISG20,
or pEGFP-mutISG20 expression vectors, as
previously described. Cell lysates were pre-
pared and subjected to immunoprecipitation
using monoclonal anti-GFP antibodies. The
immunoprecipitates were resuspended in for-
mamide loading buffer and resolved on a 6%
polyacrylamide-7Murea gel. After electrotrans-
fert to a nylon support, the blotwas analyzed for
the presence of U1, U2, and U3 RNA. As shown
in Figure 7, U1, U2, and U3 RNAs were co-
immunoprecipitated with GFP-ISG20 and
GFP-mutISG20 proteins. No RNAs were
detected when immunoprecipitation experi-
ments were performed from cells transfected
with the empty pEGFP vector. These data
demonstrate that ISG20 is a component of
ribonucleoproteic complexes.

DISCUSSION

In this report, using confocal immunofluores-
cence and electron microscopy analysis, we
show that ISG20, a 30 to 50 exoribonuclease, is
a component of both theCBsand theDFCregion
of the nucleolus. It is well established that the
nucleolus is the site of rRNA maturation and
ribosome biogenesis [Dundr and Misteli, 2001].

Fig. 7. Small nuclear RNAs co-immunoprecipitate with ISG20.
HeLa cells were transfected with the pEGFP vector or with
vectors expressing either GFP-ISG20 or GFP-mutISG20 fusion
proteins. Whole protein extracts were prepared and subjected to
immunoprecipitations with a mouse polyclonal anti-GFP anti-
body. RNAs present in the immunoprecipitates were analyzed by
Northern blot for the presence of U1 and U2 snRNAs, and U3
snoRNA. As positive control, total cellular RNAs were loaded
onto the gel.
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In particular, DFC is described as themajor site
for the late step of rRNA maturation [Puvion-
Dutilleul et al., 1992; Andersen et al., 2002;
Carmo-Fonseca, 2002a]. The fact that ISG20 is
a 30 to 50 exoribonuclease and appears princi-
pally concentrated in the DFC, strongly sug-
gests that itmightbe involved in thematuration
of rRNA and ribosome biogenesis. These pro-
cesses are highly conserved during evolution. In
eukaryotes, they are best characterized in the
yeast Saccharomyces cerevisiae [Raue and
Planta, 1991; Cockell and Gasser, 1999; Kress-
ler et al., 1999]. Notably, the Rrp5p protein is
known to be required for the processing of pre-
rRNA, particularly in the formation of both 18S
and5.8S rRNA [VenemaandTollervey, 1996]. A
recent study shows that particular motifs of
Rrp5p are crucial for the correct assembly and
action of the processing complex responsible for
maturation of rRNA [Eppens et al., 2002]. More
importantly, a synthetic lethality screenusing a
Rrp5p mutant resulted in the isolation of the
REX4gene, encoding theproteinRex4p, belong-
ing to the DEDD family of 30 ! 50 exonucleases.
The authors clearly implicate the REX4 gene
in the pre-rRNA processing in yeast Rrp5p
mutants [Eppens et al., 2002]. Interestingly,
ISG20 is a human homolog of the Rex4p. These
data and the nucleolar localization of ISG20
strongly strengthen our hypothesis on the role
of ISG20 in thematuration of rRNA in humans.

The actual implication of ISG20 in the CBs
appears more complicated. First described as
accessory bodies of the nucleolus [Cajal, 1903],
the CBs now appear as a traffic area necessary
for the maturation of snoRNAs before their
nucleolar translocation. In particular, the U3
snoRNA synthesized in the nucleoplasm is
30-end processed by an unknown exonuclease
within the CBs before association with the
common snoRNA binding protein, fibrillarin
[Herrera-Esparza et al., 2002; Verheggen et al.,
2002]. Then, the mature U3 snoRNPs are im-
ported to the nucleoli where they act as guide
RNAs in pre-rRNA cleavage during ribosome
biogenesis [Gerbi and Borovjagin, 1997; Scheer
and Hock, 1999; Dragon et al., 2002; Verheggen
et al., 2002; Carmo-Fonseca, 2002b]. On the
basis of these observations, it is tempting to
speculate that ISG20 can participate in the
maturation of U3 snoRNA and then be trans-
ported in the DFC with the large ribonucleo-
protein U3 to participate in the final steps of
rRNA processing. However, the CBs were also

suspected to be the cellular sites for post-
transcriptional modifications and final matura-
tions of spliceosomal snRNAs U1, U2, U4, and
U5 prior to their migration in the splicing
speckles bodies, another distinct nuclear struc-
ture [Sleeman et al., 2001; Darzacq et al., 2002;
Jady et al., 2003]. Thus, we cannot exclude that
ISG20 might be more generally involved in the
maturation of several RNA species. In accor-
dance with this hypothesis, we demonstrated
that U1 and U2 snRNAs, and U3 snoRNA were
co-immunoprecipitated with ISG20. Finally,
the nucleolus and CBs are highly mobile
structures, and dynamic interplays occur
between the two compartments [Dundr and
Misteli, 2001; Ogg and Lamond, 2002; Carmo-
Fonseca, 2002c]. CBs are frequently located
close to or within the nucleoli, and numerous
proteins, like the RNase P and MRP subunits
Rpp29 and Rpp38 [Jarrous et al., 1999], fibril-
larin and Nopp140 [Jarrous et al., 1999; Dundr
and Misteli, 2001] are present in both compart-
ments [Lyon et al., 1997; Sleeman et al., 1998;
Shpargel et al., 2003]. Altogether, these reports
and our own observations strongly implicate
ISG20 in events of RNA maturation involving
exchange processes between the CBs and the
nucleoli.

We also present evidences that ISG20 is
associated with nuclear SMN-containing
macromolecular complexes. SMN protein is
part of a large complex that is required for
biogenesis of various snRNPs [Fischer et al.,
1997; Liu et al., 1997; Meister et al., 2000;
Pellizzoni et al., 2001; Terns and Terns, 2001].
Recently, it has been shown that SMN interacts
directly with the coilin and that this interaction
mediates recruitment of both SMN complex and
splicing snRNPs to theCBs [Hebert et al., 2001].
Moreover, SMN is suggested to be responsible
for the assembly of CBs [Gall, 2000; Jones et al.,
2001; Massenet et al., 2002]. Furthermore, like
ISG20, SMN localizes both in the cytoplasmand
in the CBs [Liu andDreyfuss, 1996;Matera and
Frey, 1998; Carvalho et al., 1999]. Indeed, SMN
is involved in the cytoplasmic maturation of
snRNPs, with a possible role in the reimport
process [Massenet et al., 2002;Narayananetal.,
2002]. Thus, it is probable that SMN is asso-
ciated with snRNPs along their biogenesis and
leads them to theCBswhere theirmaturation is
achieved. It is for this reason that CBs have
been suggested to play a role in the later stages
of snRNP modification and assembly [Sleeman
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et al., 2003]. However, the fact that ISG20/
SMN-containing complexes seem to be mainly
localized in the CBs, suggests that ISG20might
be involved in later stages of snRNP matura-
tion.
The IFNs are a family of multifunctional

secreted proteins characterized by their abil-
ities to interfere with virus infection and
replication [Lengyel, 1993; Player and Tor-
rence, 1998]. They prevent viral propagation
mainly by interfering with the synthesis of
cellular protein [Player and Torrence, 1998].
Until now, two IFN-regulated pathways have
been considered to be involved in these pro-
cesses: the double-stranded RNA-dependent
protein kinase R (PKR) [Meurs et al., 1990;
Gale and Katze, 1998] and the 2-5A/RNase L
system [Zhou et al., 1993]. PKR is a serine/
threonine kinase which, after binding to
dsRNA, phosphorylates the protein synthesis
initiation factor eIF2 and the inhibitor of NFkB
(I-kB) resulting in the inhibition of protein
synthesis and in specific transcription regula-
tion [Williams, 2001]. RNase L is a dormant
cytosolic endoribonuclease that is activated by
short oligoadenylates produced by the 20-50

oligoadenylate synthetase (2-5OAS) following
viral infection or IFN exposure [Stark et al.,
1998]. Degradation of viral RNAs and cleavage
of cellular 18S and 28S rRNAs by activated-
RNAse L lead to the inhibition of protein
synthesis [Player and Torrence, 1998]. The
potential involvement of ISG20 in snRNA,
snoRNA, and rRNA metabolism implies the
possibility of anewpathwayparticipating in the
antiviral effects of IFNs. The noticeable IFN-
induced accumulation of ISG20 in the CBs,
where the exonuclease can interfere with
snRNPs, snoRNPs, and rRNAs formation,
strongly suggests the involvement of ISG20 in
a new route for IFN-mediated control of protein
synthesis, namely by modulating both snRNAs
and rRNAs maturation. Obviously, further
studies are needed to determine exactly the
biological contribution of ISG20 in these pro-
cesses. Unfortunately, attempts to inhibit
ISG20 expression by small interfering RNAs
(siRNA) have remained unsuccessful because
ISG20 expression is strongly and non-specifi-
cally induced by siRNA. The elucidation of the
exact functions of this highly regulated 30 to 50

exonuclease, will probably emerge from proteo-
mic approaches aimed at the identification of
direct molecular partners of ISG20.
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